The analytic structure of Bloch functions for linear molecular chains

نویسنده

  • E. Prodan
چکیده

This paper deals with Hamiltonians of the form H = −∇ + v(r), with v(r) periodic along the z direction, v(x, y, z + b) = v(x, y, z). The wavefunctions of H are the well known Bloch functions ψn,λ(r), with the fundamental property ψn,λ(x, y, z + b) = λψn,λ(x, y, z) and ∂zψn,λ(x, y, z + b) = λ∂zψn,λ(x, y, z). We give the generic analytic structure (i.e. the Riemann surface) of ψn,λ(r) and their corresponding energy, En(λ), as functions of λ. We show that En(λ) and ψn,λ(x, y, z) are different branches of two multi-valued analytic functions, E(λ) and ψλ(x, y, z), with an essential singularity at λ = 0 and additional branch points, which are generically of order 1 and 3, respectively. We show where these branch points come from, how they move when we change the potential and how to estimate their location. Based on these results, we give two applications: a compact expression of the Green’s function and a discussion of the asymptotic behavior of the density matrix for insulating molecular chains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

On a Li-Stević Integral-Type Operators between Different Weighted Bloch-Type Spaces

First, we introduce some basic notation which is used in this paper. Throughout the entire paper, the unit disk in the finite complex plane C will be denoted by D. H D will denote the space of all analytic functions on D. Every analytic self-map φ of the unit disk D induces through composition a linear composition operator Cφ fromH D to itself. It is a well-known consequence of Littlewood’s sub...

متن کامل

L-functions with Large Analytic Rank and Abelian Varieties with Large Algebraic Rank over Function Fields

The goal of this paper is to explain how a simple but apparently new fact of linear algebra together with the cohomological interpretation of L-functions allows one to produce many examples of L-functions over function fields vanishing to high order at the center point of their functional equation. Conjectures of Birch and Swinnerton-Dyer, Bloch, and Beilinson relate the orders of vanishing of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005